3.7.91 \(\int \frac {\sqrt {d x}}{a^2+2 a b x^2+b^2 x^4} \, dx\) [691]

3.7.91.1 Optimal result
3.7.91.2 Mathematica [A] (verified)
3.7.91.3 Rubi [A] (verified)
3.7.91.4 Maple [A] (verified)
3.7.91.5 Fricas [C] (verification not implemented)
3.7.91.6 Sympy [F]
3.7.91.7 Maxima [A] (verification not implemented)
3.7.91.8 Giac [A] (verification not implemented)
3.7.91.9 Mupad [B] (verification not implemented)

3.7.91.1 Optimal result

Integrand size = 28, antiderivative size = 283 \[ \int \frac {\sqrt {d x}}{a^2+2 a b x^2+b^2 x^4} \, dx=\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}-\frac {\sqrt {d} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{4 \sqrt {2} a^{5/4} b^{3/4}}+\frac {\sqrt {d} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{4 \sqrt {2} a^{5/4} b^{3/4}}+\frac {\sqrt {d} \log \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}\right )}{8 \sqrt {2} a^{5/4} b^{3/4}}-\frac {\sqrt {d} \log \left (\sqrt {a} \sqrt {d}+\sqrt {b} \sqrt {d} x+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d x}\right )}{8 \sqrt {2} a^{5/4} b^{3/4}} \]

output
1/2*(d*x)^(3/2)/a/d/(b*x^2+a)-1/8*arctan(1-b^(1/4)*2^(1/2)*(d*x)^(1/2)/a^( 
1/4)/d^(1/2))*d^(1/2)/a^(5/4)/b^(3/4)*2^(1/2)+1/8*arctan(1+b^(1/4)*2^(1/2) 
*(d*x)^(1/2)/a^(1/4)/d^(1/2))*d^(1/2)/a^(5/4)/b^(3/4)*2^(1/2)+1/16*ln(a^(1 
/2)*d^(1/2)+x*b^(1/2)*d^(1/2)-a^(1/4)*b^(1/4)*2^(1/2)*(d*x)^(1/2))*d^(1/2) 
/a^(5/4)/b^(3/4)*2^(1/2)-1/16*ln(a^(1/2)*d^(1/2)+x*b^(1/2)*d^(1/2)+a^(1/4) 
*b^(1/4)*2^(1/2)*(d*x)^(1/2))*d^(1/2)/a^(5/4)/b^(3/4)*2^(1/2)
 
3.7.91.2 Mathematica [A] (verified)

Time = 0.03 (sec) , antiderivative size = 152, normalized size of antiderivative = 0.54 \[ \int \frac {\sqrt {d x}}{a^2+2 a b x^2+b^2 x^4} \, dx=-\frac {\sqrt {d x} \left (-4 \sqrt [4]{a} b^{3/4} x^{3/2}+\sqrt {2} \left (a+b x^2\right ) \arctan \left (\frac {\sqrt {a}-\sqrt {b} x}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}\right )+\sqrt {2} \left (a+b x^2\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}}{\sqrt {a}+\sqrt {b} x}\right )\right )}{8 a^{5/4} b^{3/4} \sqrt {x} \left (a+b x^2\right )} \]

input
Integrate[Sqrt[d*x]/(a^2 + 2*a*b*x^2 + b^2*x^4),x]
 
output
-1/8*(Sqrt[d*x]*(-4*a^(1/4)*b^(3/4)*x^(3/2) + Sqrt[2]*(a + b*x^2)*ArcTan[( 
Sqrt[a] - Sqrt[b]*x)/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])] + Sqrt[2]*(a + b*x 
^2)*ArcTanh[(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x])/(Sqrt[a] + Sqrt[b]*x)]))/(a^ 
(5/4)*b^(3/4)*Sqrt[x]*(a + b*x^2))
 
3.7.91.3 Rubi [A] (verified)

Time = 0.50 (sec) , antiderivative size = 301, normalized size of antiderivative = 1.06, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.464, Rules used = {1380, 27, 253, 266, 27, 826, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {d x}}{a^2+2 a b x^2+b^2 x^4} \, dx\)

\(\Big \downarrow \) 1380

\(\displaystyle b^2 \int \frac {\sqrt {d x}}{b^2 \left (b x^2+a\right )^2}dx\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {\sqrt {d x}}{\left (a+b x^2\right )^2}dx\)

\(\Big \downarrow \) 253

\(\displaystyle \frac {\int \frac {\sqrt {d x}}{b x^2+a}dx}{4 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {\int \frac {d^3 x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 a d}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {d \int \frac {d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\)

\(\Big \downarrow \) 826

\(\displaystyle \frac {d \left (\frac {\int \frac {\sqrt {b} x d+\sqrt {a} d}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}\right )}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {d \left (\frac {\frac {\int \frac {1}{x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {b}}+\frac {\int \frac {1}{x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {b}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}\right )}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {d \left (\frac {\frac {\int \frac {1}{-d x-1}d\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\int \frac {1}{-d x-1}d\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}\right )}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {d \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\int \frac {\sqrt {a} d-\sqrt {b} d x}{b x^2 d^2+a d^2}d\sqrt {d x}}{2 \sqrt {b}}\right )}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {d \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {-\frac {\int -\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}\right )}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}\right )}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {d \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}+\frac {\int \frac {\sqrt {2} \left (\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}\right )}{\sqrt [4]{b} \left (x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}\right )}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}\right )}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {d \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\frac {\int \frac {\sqrt {2} \sqrt [4]{a} \sqrt {d}-2 \sqrt [4]{b} \sqrt {d x}}{x d+\frac {\sqrt {a} d}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt {2} \sqrt [4]{a} \sqrt {b} \sqrt {d}}+\frac {\int \frac {\sqrt [4]{a} \sqrt {d}+\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{x d+\frac {\sqrt {a} d}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} \sqrt {d x} \sqrt {d}}{\sqrt [4]{b}}}d\sqrt {d x}}{2 \sqrt [4]{a} \sqrt {b} \sqrt {d}}}{2 \sqrt {b}}\right )}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {d \left (\frac {\frac {\arctan \left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}+1\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {d x}}{\sqrt [4]{a} \sqrt {d}}\right )}{\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}-\frac {\frac {\log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d} \sqrt {d x}+\sqrt {a} d+\sqrt {b} d x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}-\frac {\log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d} \sqrt {d x}+\sqrt {a} d+\sqrt {b} d x\right )}{2 \sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {d}}}{2 \sqrt {b}}\right )}{2 a}+\frac {(d x)^{3/2}}{2 a d \left (a+b x^2\right )}\)

input
Int[Sqrt[d*x]/(a^2 + 2*a*b*x^2 + b^2*x^4),x]
 
output
(d*x)^(3/2)/(2*a*d*(a + b*x^2)) + (d*((-(ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[ 
d*x])/(a^(1/4)*Sqrt[d])]/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d])) + ArcTan[1 + ( 
Sqrt[2]*b^(1/4)*Sqrt[d*x])/(a^(1/4)*Sqrt[d])]/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqr 
t[d]))/(2*Sqrt[b]) - (-1/2*Log[Sqrt[a]*d + Sqrt[b]*d*x - Sqrt[2]*a^(1/4)*b 
^(1/4)*Sqrt[d]*Sqrt[d*x]]/(Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d]) + Log[Sqrt[a]* 
d + Sqrt[b]*d*x + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[d]*Sqrt[d*x]]/(2*Sqrt[2]*a^ 
(1/4)*b^(1/4)*Sqrt[d]))/(2*Sqrt[b])))/(2*a)
 

3.7.91.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 253
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(c*x 
)^(m + 1))*((a + b*x^2)^(p + 1)/(2*a*c*(p + 1))), x] + Simp[(m + 2*p + 3)/( 
2*a*(p + 1))   Int[(c*x)^m*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, m 
}, x] && LtQ[p, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 826
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 
2]], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*s)   Int[(r + s*x^2)/(a + b*x^ 
4), x], x] - Simp[1/(2*s)   Int[(r - s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{ 
a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] 
 && AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1380
Int[(u_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> S 
imp[1/c^p   Int[u*(b/2 + c*x^n)^(2*p), x], x] /; FreeQ[{a, b, c, n, p}, x] 
&& EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 
3.7.91.4 Maple [A] (verified)

Time = 0.17 (sec) , antiderivative size = 180, normalized size of antiderivative = 0.64

method result size
derivativedivides \(2 d^{3} \left (\frac {\left (d x \right )^{\frac {3}{2}}}{4 a \,d^{2} \left (b \,d^{2} x^{2}+a \,d^{2}\right )}+\frac {\sqrt {2}\, \left (\ln \left (\frac {d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{32 a \,d^{2} b \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right )\) \(180\)
default \(2 d^{3} \left (\frac {\left (d x \right )^{\frac {3}{2}}}{4 a \,d^{2} \left (b \,d^{2} x^{2}+a \,d^{2}\right )}+\frac {\sqrt {2}\, \left (\ln \left (\frac {d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}-1\right )\right )}{32 a \,d^{2} b \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right )\) \(180\)
pseudoelliptic \(\frac {8 x \sqrt {d x}\, b \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}+\sqrt {2}\, d \left (b \,x^{2}+a \right ) \left (2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}-\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {d x}+\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}{\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}}}\right )+\ln \left (\frac {d x -\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}{d x +\left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x}\, \sqrt {2}+\sqrt {\frac {a \,d^{2}}{b}}}\right )\right )}{16 \left (\frac {a \,d^{2}}{b}\right )^{\frac {1}{4}} b \left (b \,x^{2}+a \right ) a}\) \(202\)

input
int((d*x)^(1/2)/(b^2*x^4+2*a*b*x^2+a^2),x,method=_RETURNVERBOSE)
 
output
2*d^3*(1/4*(d*x)^(3/2)/a/d^2/(b*d^2*x^2+a*d^2)+1/32/a/d^2/b/(a*d^2/b)^(1/4 
)*2^(1/2)*(ln((d*x-(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2))/(d 
*x+(a*d^2/b)^(1/4)*(d*x)^(1/2)*2^(1/2)+(a*d^2/b)^(1/2)))+2*arctan(2^(1/2)/ 
(a*d^2/b)^(1/4)*(d*x)^(1/2)+1)+2*arctan(2^(1/2)/(a*d^2/b)^(1/4)*(d*x)^(1/2 
)-1)))
 
3.7.91.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.26 (sec) , antiderivative size = 247, normalized size of antiderivative = 0.87 \[ \int \frac {\sqrt {d x}}{a^2+2 a b x^2+b^2 x^4} \, dx=\frac {{\left (a b x^{2} + a^{2}\right )} \left (-\frac {d^{2}}{a^{5} b^{3}}\right )^{\frac {1}{4}} \log \left (a^{4} b^{2} \left (-\frac {d^{2}}{a^{5} b^{3}}\right )^{\frac {3}{4}} + \sqrt {d x} d\right ) - {\left (i \, a b x^{2} + i \, a^{2}\right )} \left (-\frac {d^{2}}{a^{5} b^{3}}\right )^{\frac {1}{4}} \log \left (i \, a^{4} b^{2} \left (-\frac {d^{2}}{a^{5} b^{3}}\right )^{\frac {3}{4}} + \sqrt {d x} d\right ) - {\left (-i \, a b x^{2} - i \, a^{2}\right )} \left (-\frac {d^{2}}{a^{5} b^{3}}\right )^{\frac {1}{4}} \log \left (-i \, a^{4} b^{2} \left (-\frac {d^{2}}{a^{5} b^{3}}\right )^{\frac {3}{4}} + \sqrt {d x} d\right ) - {\left (a b x^{2} + a^{2}\right )} \left (-\frac {d^{2}}{a^{5} b^{3}}\right )^{\frac {1}{4}} \log \left (-a^{4} b^{2} \left (-\frac {d^{2}}{a^{5} b^{3}}\right )^{\frac {3}{4}} + \sqrt {d x} d\right ) + 4 \, \sqrt {d x} x}{8 \, {\left (a b x^{2} + a^{2}\right )}} \]

input
integrate((d*x)^(1/2)/(b^2*x^4+2*a*b*x^2+a^2),x, algorithm="fricas")
 
output
1/8*((a*b*x^2 + a^2)*(-d^2/(a^5*b^3))^(1/4)*log(a^4*b^2*(-d^2/(a^5*b^3))^( 
3/4) + sqrt(d*x)*d) - (I*a*b*x^2 + I*a^2)*(-d^2/(a^5*b^3))^(1/4)*log(I*a^4 
*b^2*(-d^2/(a^5*b^3))^(3/4) + sqrt(d*x)*d) - (-I*a*b*x^2 - I*a^2)*(-d^2/(a 
^5*b^3))^(1/4)*log(-I*a^4*b^2*(-d^2/(a^5*b^3))^(3/4) + sqrt(d*x)*d) - (a*b 
*x^2 + a^2)*(-d^2/(a^5*b^3))^(1/4)*log(-a^4*b^2*(-d^2/(a^5*b^3))^(3/4) + s 
qrt(d*x)*d) + 4*sqrt(d*x)*x)/(a*b*x^2 + a^2)
 
3.7.91.6 Sympy [F]

\[ \int \frac {\sqrt {d x}}{a^2+2 a b x^2+b^2 x^4} \, dx=\int \frac {\sqrt {d x}}{\left (a + b x^{2}\right )^{2}}\, dx \]

input
integrate((d*x)**(1/2)/(b**2*x**4+2*a*b*x**2+a**2),x)
 
output
Integral(sqrt(d*x)/(a + b*x**2)**2, x)
 
3.7.91.7 Maxima [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 255, normalized size of antiderivative = 0.90 \[ \int \frac {\sqrt {d x}}{a^2+2 a b x^2+b^2 x^4} \, dx=\frac {\frac {8 \, \left (d x\right )^{\frac {3}{2}} d^{2}}{a b d^{2} x^{2} + a^{2} d^{2}} + \frac {d^{2} {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {d x} \sqrt {b}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b} d}}\right )}{\sqrt {\sqrt {a} \sqrt {b} d} \sqrt {b}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {d x} \sqrt {b}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b} d}}\right )}{\sqrt {\sqrt {a} \sqrt {b} d} \sqrt {b}} - \frac {\sqrt {2} \log \left (\sqrt {b} d x + \sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} \sqrt {d x} b^{\frac {1}{4}} + \sqrt {a} d\right )}{\left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (\sqrt {b} d x - \sqrt {2} \left (a d^{2}\right )^{\frac {1}{4}} \sqrt {d x} b^{\frac {1}{4}} + \sqrt {a} d\right )}{\left (a d^{2}\right )^{\frac {1}{4}} b^{\frac {3}{4}}}\right )}}{a}}{16 \, d} \]

input
integrate((d*x)^(1/2)/(b^2*x^4+2*a*b*x^2+a^2),x, algorithm="maxima")
 
output
1/16*(8*(d*x)^(3/2)*d^2/(a*b*d^2*x^2 + a^2*d^2) + d^2*(2*sqrt(2)*arctan(1/ 
2*sqrt(2)*(sqrt(2)*(a*d^2)^(1/4)*b^(1/4) + 2*sqrt(d*x)*sqrt(b))/sqrt(sqrt( 
a)*sqrt(b)*d))/(sqrt(sqrt(a)*sqrt(b)*d)*sqrt(b)) + 2*sqrt(2)*arctan(-1/2*s 
qrt(2)*(sqrt(2)*(a*d^2)^(1/4)*b^(1/4) - 2*sqrt(d*x)*sqrt(b))/sqrt(sqrt(a)* 
sqrt(b)*d))/(sqrt(sqrt(a)*sqrt(b)*d)*sqrt(b)) - sqrt(2)*log(sqrt(b)*d*x + 
sqrt(2)*(a*d^2)^(1/4)*sqrt(d*x)*b^(1/4) + sqrt(a)*d)/((a*d^2)^(1/4)*b^(3/4 
)) + sqrt(2)*log(sqrt(b)*d*x - sqrt(2)*(a*d^2)^(1/4)*sqrt(d*x)*b^(1/4) + s 
qrt(a)*d)/((a*d^2)^(1/4)*b^(3/4)))/a)/d
 
3.7.91.8 Giac [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 264, normalized size of antiderivative = 0.93 \[ \int \frac {\sqrt {d x}}{a^2+2 a b x^2+b^2 x^4} \, dx=\frac {\frac {8 \, \sqrt {d x} d^{3} x}{{\left (b d^{2} x^{2} + a d^{2}\right )} a} + \frac {2 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{a^{2} b^{3}} + \frac {2 \, \sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {3}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {d x}\right )}}{2 \, \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}}}\right )}{a^{2} b^{3}} - \frac {\sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {3}{4}} \log \left (d x + \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{a^{2} b^{3}} + \frac {\sqrt {2} \left (a b^{3} d^{2}\right )^{\frac {3}{4}} \log \left (d x - \sqrt {2} \left (\frac {a d^{2}}{b}\right )^{\frac {1}{4}} \sqrt {d x} + \sqrt {\frac {a d^{2}}{b}}\right )}{a^{2} b^{3}}}{16 \, d} \]

input
integrate((d*x)^(1/2)/(b^2*x^4+2*a*b*x^2+a^2),x, algorithm="giac")
 
output
1/16*(8*sqrt(d*x)*d^3*x/((b*d^2*x^2 + a*d^2)*a) + 2*sqrt(2)*(a*b^3*d^2)^(3 
/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a*d^2/b)^(1/4) + 2*sqrt(d*x))/(a*d^2/b)^( 
1/4))/(a^2*b^3) + 2*sqrt(2)*(a*b^3*d^2)^(3/4)*arctan(-1/2*sqrt(2)*(sqrt(2) 
*(a*d^2/b)^(1/4) - 2*sqrt(d*x))/(a*d^2/b)^(1/4))/(a^2*b^3) - sqrt(2)*(a*b^ 
3*d^2)^(3/4)*log(d*x + sqrt(2)*(a*d^2/b)^(1/4)*sqrt(d*x) + sqrt(a*d^2/b))/ 
(a^2*b^3) + sqrt(2)*(a*b^3*d^2)^(3/4)*log(d*x - sqrt(2)*(a*d^2/b)^(1/4)*sq 
rt(d*x) + sqrt(a*d^2/b))/(a^2*b^3))/d
 
3.7.91.9 Mupad [B] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.32 \[ \int \frac {\sqrt {d x}}{a^2+2 a b x^2+b^2 x^4} \, dx=\frac {\sqrt {d}\,\mathrm {atanh}\left (\frac {b^{1/4}\,\sqrt {d\,x}}{{\left (-a\right )}^{1/4}\,\sqrt {d}}\right )}{4\,{\left (-a\right )}^{5/4}\,b^{3/4}}-\frac {\sqrt {d}\,\mathrm {atan}\left (\frac {b^{1/4}\,\sqrt {d\,x}}{{\left (-a\right )}^{1/4}\,\sqrt {d}}\right )}{4\,{\left (-a\right )}^{5/4}\,b^{3/4}}+\frac {d\,{\left (d\,x\right )}^{3/2}}{2\,a\,\left (b\,d^2\,x^2+a\,d^2\right )} \]

input
int((d*x)^(1/2)/(a^2 + b^2*x^4 + 2*a*b*x^2),x)
 
output
(d^(1/2)*atanh((b^(1/4)*(d*x)^(1/2))/((-a)^(1/4)*d^(1/2))))/(4*(-a)^(5/4)* 
b^(3/4)) - (d^(1/2)*atan((b^(1/4)*(d*x)^(1/2))/((-a)^(1/4)*d^(1/2))))/(4*( 
-a)^(5/4)*b^(3/4)) + (d*(d*x)^(3/2))/(2*a*(a*d^2 + b*d^2*x^2))